DISLOCATION SHIELDING OF A CRACK IN A QUASI CONTINUUM APPROXIMATION*

R. M. Thomson and E. R. Fuller, Jr.
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Earlier predictions of toughness by Thomson and Weertman are reviewed.
The differing predictions of the two authors are shown to be due to different
interpretations of the functional dependence of the size of the elastic region
on intrinsic surface energy. An analysis of the quasi continuum model in terms
of dislocation rearrangements is given, and the nature of the boundary condi-
tion on the elastic enclave boundary is discussed.
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I. Introduction

Thomson‘ and Heertman2 have recently published expressions (1) and
(2), respectively, for the stress intensity factors for equilibrium cracks
based on an elastic enclave model of fracture

(1+n)/2n 2 (n-1)/2n

K o=2n (53 (Ryo, ) (1)

K = %Tlf, (2)

(We have modified Eqn. (1) from that given in Ref. 1 by a numerical factor
of 2(]+")/2" to conform to the analysis carried out below.)

K is the stress intensity factor as measured at the external grips for a crack
in small scale yielding of a given length, o_ the yield strength of the
material, u the shear modulus, T the intrinsYc surface energy, n the strain
hardening parameter, R_ the radius of the elastic enclave, v Poisson's ratio,
and ¢ a derived quantiiy, c<<1. They differ most strikingly in that Eqn. (1)
predicts a power law dependence on I with a power in the neighborhood of 2-3,
while Eqn. (2) apparently yields the_linear dependence of pure brittle fracture,
except for the multiplying factor, ¢ 2. We will show that one may find a range
of dependence on I from one of these expressions to the other, depending on how /
one interprets the variation of the inner radius R, with external stress. The
two expressions were derived using different boundgry conditions on R , however,
and a second aim of the paper will be to explore qualitatively the quSstion of
what the boundary conditions should be in terms of dislocation models.

We will work exclusively in Mode III anti-plane strain for the reason that
the mathematical analysis in this case is simple, and the consequences for a
specific physical model can be clearly worked out. We assume, of course, that
predictions for Mode III should have qualitative significance for the physi-
cally important Mode I case. Also, we shall work with a time independent,
static, deformation law for the reason again that the crucial issue is to
decide how to model the crack physically with an elastic enclave, and not to
make detajled predictions regarding crack growth. '?

When we think of embedding a sharp crack in a material containing external
dislocation sources distributed randomly around the crack tip, the tip of the
crack, on probabilistic grounds, is most 1ikely not to experience the blunting
catastrophe which would occur if a slip plane should intersect the exact position
of the tip over a significant front of the crack and destroy its sharp character.
Rather, slip taking place ahead of the crack will pass it by without changing
the geometric configuration of the cohesive zone, and slip taking place behind
it will cut the cleavage surface and create typical s1ip steps on the cleavage
surface. The crack will then be supposed to take the general shape depicted
in Figure 1. It is our object to work out the predicted toughness of a
material possessing such a crack.

I11. The Elastic Enclave Model in Mode IIl

To derive any quantitative results, it is necessary to model the plasti-
cally deformed region surrounding the crack by a continuum theory. Further,
in the usual fashion, we assume small scale yielding, and assert that outside
some finite boundary surrounding the crack the material is stressed below its
yield stress, and is linear elastic. We label these regions in Figure 2, Il
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Figure 1 - A sharp crack which has been blunted by
impingement of discrete slip lines on its cleavage
surface.

u

PLASTIC CONTINUUM

IX ELASTIC CONTINUUM

Figure 2 - Schematic of a crack surrounded by elastic
and plastic regions. [, elastic enclave surrounding the
crack tip of radius R_; II, plastic continuum region of
radfus R ; 1II, elasttc region. The crack is centered
in Re' b&t Rp is not concentric.

and 111, respectively. Finally, if the immediate local vicinity of the crack
tip possesses no dislocation sources and is devoid of slip planes, then in

this Jocal region, termed by Weertman the elastic enclave, the material is
again linearly elastic until the stresses become so high in the cohesive
region of the crack that discrete nonlinear effects must be considered. In

the following, we think of the cohesive region as characterized by a critical
local K in the Barenblatt sense, and consider the crack to be an elastic singu-
larity with this K. In Figure 2 we label the elastic enclave I.
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For reasons which will become apparent in the following, we have shown
all boundaries as circles. The outer boundary between Il and III is
characterized as the locus of points where the stress equals the critical
shear stress, o.. The inner boundary, however, is more difficult to specify.
In reference (1? we related it to the maximum dislocation density. However,
the meaning of region I is best seen by considering the qualitative form of
the crack opening displacement as a function of the distance from the crack
tip. In Figure 3 we show in a) the displacement function for the cleavage
surface for a fully brittle continuum crack, and in b) that for a continuum
plastic crack. In c) we show what a crack displacement function would look
like if the deformation is heterogeneous. From these figures, we should
identify R, with the distance between the discrete steps representing actual
slip plane? near the crack tip. Further, as a plausible procedure for solving
the stress distribution problem, we shall interpret R, as a lower "cut-off"
for the plastic solution, and assume that the solutiofi for R > R_ is given by
the continuum plastic solution. Within Re’ only the elastic por%ions of the
strain and displacement functions persist; and we match elastic values of the
solution on the boundary R.. Since there are no external sources of stress
on Re, the stress must als§ be continuous there.

Figure 3 - a. crack opening of elastic crack; b. crack
opening of fully plastic crack; c. crack opening when
the plastic strain is discretized on slip planes.

Recapitulating, our procedure amounts to a recognition that the displace-
ment is composed of two components, elastic and plastic, which normally must
be coupled to determine the overall solution, but in our case must be decoupled -
because the plastic component undergoes a cut-off before the elastic component
does. Within the confines of a continuum theory, there is no rigorous way to
accomplish this decomposition, but clearly an approximate solution will be
achieved if we adopt the full continuum solution of Figure 3b., separate off
the elastic portion, and match an elastic crack in | to the elastic component
of II at Re'

Analytically, we follow Rice's3 solution of the work hardening Mode 111
problem. We assume a constitutive work hardening law of the form

n
@ = ogl) (3)
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where o and y are principal stress and strain, respectively, and o,., and v

are the corresponding critical yield values. We assume the crack ies aloﬂg
the negative x-axis with its tip at the origin. In Rice's problem Re = 0. He
introduces a potential function ¥(y,4), where ¢ is the angle between"y and the
y axis, with the defining equations.

X = -sin ¢ 3¥ - cos ¢ 3Y
ay Y 3¢

Yy =c0s ¢ 3¥ - sin ¢ ¥
3y Y (4)

which satisfies the differential equation

v2 22¢ + my 3¥ + ma2¢ _

W W ()
The boundary conditions are that
3y -
3] ¢ = ta/2 0 (€)

If we solve Eqn. (5) by separation of variables then ¥ must have the form

¥ = ¥(y) sinm ¢
m= 3], t2--- (7)

Then Eqn. (5) is solved by setting /
y =P (8)
where p satisfies the quadratic indicial equation
p(p-1) - np - nm2 = 0 (9)
For each value of m, p has two solutions, p, and p_.
The general solution for Eqn. (4) 1s the series
® p,(m) . ?_(m)

¥y= I (amy my

) sinm ¢ {10)
m=1

Rice was able to satisfy the boundary conditions for au = 0 at the crack
tip and the boundary conditions on the elasiic-plastic boundary by retaining
only one term of the series in Eqn. (10},

v =a sin % (1)
Y

From this, he shows

x = X(y) + R(y) cos 2 ¢
y=R{y) sin 2

K2 Yo, . Yo,
R(v) = Zrog? - Ry (=




X(v) = %iﬁ'R(v)
20 = @ (12)
This solution is represented by a set of nested circles. On the circumference

of each circle, y is a vector of constant magnitude, whose polar components are
given by the equations

YR T Y sin /2 op = © sin ¢/2
Yg = Y COS 8/2 g, = 0 COS 6/2
8 =2¢ (13)

where R and ¢ are measured in a system of polar coordinates with the origin
at the center of each circle. For different values of v, the centers of the
circles shift, being situated at x = X(y), relative to the crack tip. See
Figure 4. The stress intensity factor, K, defines the radius of the elastic
plastic boundary, Rp

2 2 2
K 2noo Rp (14)

CIRCLES

Figure 4 - Schematic drawing of crack embedded in three
regions as in Figure 2. The accumulation point for the
plastic circles, R(y), is to the left of the center of
the elastic enclave. X(y) is the distance from the
accumulation point to the center of the circle, R(y).
An arbitrary R {(y)is shown with the principal strain

vy on the circumference, and coordinates, R, 6.
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CONTINUUM PLASTICITY

ELASTIC
ENCLAVE
SOLUTION

Figure 5 - The continuum plastic solution in our model
is replaced by an elastic crack opening at the tip with
a discontinuous displacement ar R corresponding to
concentrating all the continuum dfslocations within R
onto its circumference. The slope of the displacemen%
at Re is continuous.

Equations (4) through (14) describe a fully continuum plastic crack. In
our problem, we assume at a value of R given by R_, the plastic solution is
cut off, and the solution is continued within R By a purely elastic solution.
(See Figure 5.) We now write the solution for § purely elastic crack situated
at the geometric center of R_. With the usual boundary conditions au = 0 at
the tip, and zero stress on $he crack surfaces, the solution within Re is

w /2
gt b
z = x-iy
a(z) = o32(x,y) + i 03;(x,y) (15)

where C_ is real, and K, is the local K for the crack tip enclosed in the
elastic conclave. In Polar coordinates centered at the center of R_, the
first term has the form e

Y /2
o = — sin e = uy
R /ow R
Ke R <Ry
o, = —— CO0S 0/2 = uy
ke /2R
u =IJ— ;—sin 6/2 (16)

where u is the component of the displacement normal to the x-y plane.
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In the foregoing, we have used a variety of coordinate origins, and crack
tip positions, which we wish to clarify here to avoid possible confusion for
the reader. In writing the equations (4) through (14) describing the plastic
solution, we had reference to an effective crack tip position shown in Figure 4
to which the continuum solutions were referred. This effective Lip position
was the accumulation point about which the nested circles converged as R + 0.
Also, we described a coordinate system for 6 in Eqn. (13) which specified the
orientation of the principal strain (and stress) for a particular magnitude
of vy and for a given R, where R_ > R > R_.. This coordinate system was centered
at the center of the given circ?e R. Th?s center is at a distance X(y) from
the effective position of the continuum plastic crack. Finally, we assume
that a crack tip, elastic this time, is placed at the center of the circle,

R, whose circumference defines the boundary of the elastic enclave. We note
that by construction, the accumulation point of the nested circles of the
plastic solution at the effective plastic crack position is not at the same
position at the elastic crack at the Center of R_. Nevertheless, the actual
physical crack is assumed to be positioned at th& center of R » and coincides
with the elastic crack of equations (15) and (16). Its solutfon within R is
given by equations (15) and (16), and outside R_ is given by equations (4§-(14)
with boundary conditions given on Re which we nw specify,

On the circle, R_, we set the stress of the elastic solution, Eqn. (16),
equal to the stress of the plastic solution, Eqn. (13). We note that since
these equations display the same angular dependence, with respect to 6 on R_,
this is easily done. With the use of the third equation of Eqn. (12) and tfe
defining relation for K, we have

R (1-n)/(1+
@ axa R a7
e

If we assume that the elastic crack is in equilibrium, that is, Ke obeys
the Griffith relation,

Ke2 = 4Ty (18)

we have R (1-n)/{14n)
K2 = 4ru (ﬁEJ (19a)
e

1
(Z%E)(]+n)/(2n) Z;;;;;; (1-n)/(2n)

= 2q (19b)

This is the result quoted in Eqn. (1).

We now compare this result with Weertman's results, Eqn. (2), which we
take from Eqn. (24) of reference (2). If we rewrite this equation in our
notation, we have

% (1-n)/(2n)
C=n (a'(ﬁe’) (20)

Weertman's parameter p can be replaced by 1/(n+1), and n is a constant, n<l.
Since 1n Mode 111, (04/o(R,)) = (Rp/ae)"/"”. we have
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R_ (1-n)/2(1+n)
cent® (21)
P

Except for the constant, n, this is precisely the result (19a) of this paper.

Thus, a direct comparison of Eqn. (1) with Eqn. (2) shows they are based
on precisely the same results. They differ in that in Eqn. (1), we have not
taken the ratio, R_/R., to be a constant. There, R_is written in terms of
its dependence on P, §nd R_ is left as an undetermiRed parameter. Thus the
discrepancy in the pub1ish8d results apparently does not revolve around a
different use of the boundary conditions, but rather depends upon how the
ratio Rp/Re is interpreted.

In our opinion, there is no physical reason why R_ and R  will depend on
I in precisely the same manner. Hence, the dependencepof K ofi T should be
more complex than a simple linear relation. From the discussion here, however,
it is clear that no theory yet exists from which R, can be related to I, and in
fact, from Eqn. (19a), experimental measurement of K(T) would provide evidence
on the point.

III. Alternative Continuum Solutions

In this section, we explore Weertman's suggestion that the total dis-
placement at R_ should be continuous, as well as o. However, rather than
follow Weertmafi's Mode I development, we believe it is preferable to remain
in Mode IIl, where the analysis is more accessible, and compare Weertman's
prescription with the results of Section II of this paper.

Following Weertman, we write a solution in region Il of the form

YII«R'p, and then match appropriate power series solutions in regions I and
II1 to this region II plastic solution. We believe that a simplification is
possible which is suggested by the fact that since R_>>R_, the solutions at
R and the matching process there should be effectivgly ?ndependent of the
dBtails of the matching on R,. That is, microstructural effscts are fully
damped out when R A R_. Thul, in Region III, we follow Rice”, and take the
elastic solution in IfI to be

Il K
g

= ——sin8/2
R 4
clél = —K——cos 8/2
81
R> R (22)

R and 6 are the polar coordinates relative to an origin fixed at the center
of R . That is, in region III, the crack tip has an effective position at

the Benter of the plastic circle, R . Also, the p}astic solution at R_ should
consist only of the expressions for'¥ used by Rice”, which was the firlt term
m=1, of the expansion, Eqns. (7) and (10).

However, if we are to match the total displacement and stress at R_, we
shall have to consider additional terms in either the expansion, Eqn. (75),
for the elastic region I or for the plastic region II, or both. Further, if
we incliude higher order terms in Eqn. (10), they must disappear with R faster
than the dominant term, y = R-l/(l+n). An inspection of the two expansions,

Egns. (15) and (10), however, shows that in order to match solutions on some
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boundary corresponding to R_, all the terms in either or both of these expan-
sions will have to be used, because their angular dependencies are incommen-
surate. In addition, the matching surface may have a complex shape as well.
This was a point noted by Weertman, who in the face of this difficulty, simply
ignored the angular dependence, and matched stress and displacement with the
smallest possible number of terms in the R parts only. Following this path,
we can again, as Weertman did, keep only the dominant solution in region II,
and add one term to the elastic expansion in region I. at R = R, we have

K

R. n/(1+n) 1_ e
IT _ p ¢ = + AR
g =9 (Re) \/E'nRe €
R 1/(1+n) K. R 3/2
Ir_ p I _ e e 2 AR
vt B g Re ol Al (23)

These expressions are obtained from Eqns. (12), (13), QZO), and (16), but we
have added the term in A to the dominant Ke terms in ¢” and u”. Writing

R -
o ()" = &2 A W&
° 'R /ER, e
Eg}Tn Ke /ERe 2 A _3/2
2vq (Re) R=r V7 * 3 ;R (24)

for the matching conditions on Re’ we finally obtain

R 10
= 3@ -] @ (25)
e

K 2

-

o

Since R >>R_, Eqn. (25) shows that the elastic crack is not shielded by
the deformatfon $1eld, and K_>K, which is a non-physical result. This anomaly
is caused by the large value of the elastic K-field required to match the
large continuum displacement at R_,. Also, A has a large negative value,
which requires a correspondingly ?arge counterbalancing K-field.

1V. Conclusion

The published results of Thomson and Weertman are shown to reflect
equivalent physical pictures at the crack tip. Their difference is caused by
different implications concerning the material parameters which control the
size of the elastic enclave. However, as there has yet been no adequate
treatment of the size of the elastic enclave, we believe it would be fruitful
at this stage to highlight it as a fruitful field for experimental study.

In effect, what our treatment does is to modify the dislocation distribution
and their sources in the region of the crack tip from that of the plastic
continuum solution. The dislocation distribution implied by the plastic
solution is often termed the "geometric" distribution, and can be calculated
from the curl of the local stress function, 5. The geometric distribution
calculated in this way does not have a strong singularity at the crack tip,
and it is therefore possible to modify it by concentrating the distribution
totally on the circumference of R, without markedly changing the overall K.
However, modifying the manner in fihich these dislocations are introduced into
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the medium from the cleavage surface, for example, by assuming that real
dislocations form discrete slip lines on crystallographic planes, will modify
the detailed shape of the crack opening near its tip. This is precisely the
point of our discussion as shown in Figures 4 and 5, of course. On the other
hand, these modifications in crack opening near the tip do not change the
total crack opening displacement (COD), provided the total integrated

burgers vector of the screening dislocation distribution is unchanged, as
shown again in Figures 5 and 6. Finally, such changes within R, amount to

a change in the local stress-strain law, which will modify the §tress and
strain solutions within R_ markedly. Indeed, in our solution, we have
recognized this important change by specifying an elastic stress-strain

law within R_, with the results derived in section II. A more adequate
theory, of cSurse, would deal in a unified way with the elastic and plastic
regions by means of actual discrete distributions of dislocations. Thus,
although we believe we have some of the physics right in Eqns. (19a and 19b),

we are less sure of the details, and we have lumped some large questions into
our parameter, R..

In summary, we do not believe we yet have an adequate theory of the
toughness exhibited by sharp cracks in a medium of modest ductility. The
problem remaining relates to how one makes a rigorous transition from the
plastic continuum to the discrete description of dislocation distributions
at the crack tip. The cut-off procedure of this paper is at best ad hoc, and
since the cutoff radius, R_, appears in an essential way in the results (i.e.,
leaving open the dependencs of R_on T, etc.), we believe a proper theoretical
treatment still lies in the futuPe.

We have profited from discussions of this problem with E. Hart, I. Lin,
and J. Weertman.

References

1. R, Thomson, J. Matls. Sci. 13, 128 (1978).
2. J. Weertman, ibid. 15, 1306.

3. J. Rice, J. Appl. Mech. 34, 287 (1967). See also Fracture, Vol. II,
pp. 256, Ed. H. Liebowitz, Academic Press, New York (1968).

Accession For

TNTIS ORA&I

3
fhanmounesd 0

Py o e

| pistributicn/
i
1

[

Avetl emr/ 0T
‘Dist | Special

- M

| avallability 7oce

|




IR o

SECURITY C, A% '35 AV 1L OF T4)S PAGF "When Nate Friered)

HEAD INVIN, ‘ TIONS
REPORT DOCUMENTATION PAGE BEFORE CoOMPLT TING r4nm
I. REPORT NUMBEN {4 /$OVT ACCESSION NO. 3TRELHIIN TS CATALLL NomBEN
g T .
16810.1-MS TN/AE N - N/A
& TVITLE (end Subdtitie) 3 TYYPE OF REPOAYT & PEMOD COVERED
Dis) . . , . . Reprint
islocation Shielding of a Crack in a Quasi
Continuum Approximation S. PERFORM NG ORG HEPORT NUMBER
N/A
7. AUTHOR(s) ] CONTRA’C' GR GRANTY NUMBER(e)
R. M. Thomson
E. R. Tuller, Jr. ARO 36-82 I
9. PERFORMING ORGANIZATICN NAME AND ADDRESS T\G PROIFAM E_EMENT PRIJECT, TASK
AREA 8 WCRu UNIT NUMBERS
, National Bureau of Standards i
Washington, DC 20234
N/A
" cou*mc.‘mo OFFICE NAME AND ADDRESS 12 REPORY DATE
‘ I: . Army Fesearcn Jffice Oct 81
‘ T D, Tox oo 1Y NUMBER OF PAGES

- TT,

‘ esearc: Triznele Do T 277 . 11
4 MCNITOR.NG AGENCY NAME 8 ADDRESS/I! different trom Controliing Office) @ 'S SEZURITY CLASS, (of this report)

vnc.assified

' 1%¢ DEC._AfswnCA'nou DOVINGRADlNG
= - N 'I”""‘ eSO TE TS T TImY T T T ommmmetomm memmmemRe

16, OISTRIBUTION STATEMENT (of thte Report)

Submitted for announcement only,

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18 SUPPLEMENTARY NOTES

19 XEY WORDS (Continue on reveree atde Il neceeasary and identity by dlock number)

20 ABSTRACT (Coniinue on reverse eide Il neceseary and identity by block number)

&304()70

(o
o

FORM
. DD, in7s 1473  €oimicnoF 1 acvesiscesoLETE . _
vrc.ess.fied
SECURITY CLASSIF CATION LF THIS PAGE (When Deta Entered)






